Introduction to Engineering Using Robotics Experiments

Lecture L10 Operating Systems

Dr. Yinong Chen
Functions of Operating Systems

Operating System is the interface between human and computer

- Oversee operations of a computer
- Store and retrieve files
- Schedule programs for execution
- Coordinate the execution of programs

An OS course will discuss OS design and implementation in detail
Evolution of Shared Computing

- Batch processing
- Interactive processing
 - Requires real-time processing
- Time-sharing/Multitasking
 - Implemented by multiprogramming
- Multiprocessor machines
- Web operating systems

Process queue
- start
- ready
- quantum expires
- dispatch
- running
- wait
- sleep
- complete
- blocked
- terminated

waiting
sleeping

Batch processing

Jobs: Program, data, and directions

Results

User domain

Machine domain

Job queue

Job execut
Interactive processing

 Programs, data, directions, and results

User domain

Machine domain

Program execution
Software Classification

Software Engineers in Application

- Application
 - E-commerce
 - Games

Software

- System
 - Utility
 - Compilers
 - Operating system
 - Shell
 - Kernel
 - Device managers

Software Engineers in System
Operating System Components

- **Shell**: Communicates with users
 - Text based
 - Graphical user interface (GUI)
- **Kernel**: Performs basic required functions
 - File manager
 - Memory manager
 - Scheduler and dispatcher
- **Device managers**
 - Drivers that can be installed and uninstalled by users

- **Not replaceable**
- **Replaceable**
The shell as an interface between users and the operating system
File Manager

- **Directory (or Folder):** A user-created bundle of files and other directories (subdirectories)
- **Directory Path:** A sequence of directories within directories
- **Example:** **DOS** (Disk Operating System) is basically a file manager, as the shell and other kernel managers are very simple. DOS runs one program at a time, and thus memory manager is almost nothing:

 640K ought to be enough for anybody.

 Bill Gates, Microsoft
Memory Manager

• Allocates space in main memory
• May create the illusion that the machine has more memory than it actually does (virtual memory) by playing a “shell game”, in which blocks of data (pages) are shifted back and forth between main memory and mass storage (disk)
• Memory manager is complex in multitasking and multi-processor system
 • Memory sharing
 • Faster memory → Cache → Level 1 and Level 2

Computer Organization and Architecture courses will discuss the topics in detail
Getting it Started (Bootstrapping)

- **Bootstrap**: Program in ROM (example of firmware)
 - Run by the CPU when power is turned on
 - Transfers operating system from mass storage (disk) to main memory (RAM)
 - Executes jump to operating system
The booting process

Step 1: Machine starts by executing the bootstrap program already in memory. Operating system is stored in mass storage.

Step 2: Bootstrap program directs the transfer of the operating system into main memory and then transfers control to it.

Step 3: Load application programs
Programs vs. Processes

- **A program** is a sequence of instructions
- **Process:** a program in execution, with intermediate results (process state)
- **Process State:** Current status of the process
 - Program counter (what instruction is to be executed next?)
 - Register values (temporary space for values being processed)
 - Related portion of main memory contents
Process Administration in Multitasking OS

- **Scheduler**: Adds new processes to the process table and removes completed processes from the process table.
- **Dispatcher**: Controls the allocation of time slices to the processes in the process table (ready state).
 - The end of a time slice is signaled by an interrupt.
Web Operating System

- Started around 1999 at UC Berkeley
- Started to challenge desktop OS, when Web-based computing started to compete with desktop-based computing in the recent years
- Web-based computing concepts;
 - Service-oriented computing, e-commerce applications
 - Web 2.0: Web as computing platform
 - Web 3.0: Semantic Web
- Cloud computing
 - Software as a Service (SaaS)
 - Infrastructure as a Service (IaaS)
 - Platform as a Service (PaaS)
- Big Data
• A **deadlock** is a situation wherein two or more competing actions are waiting for the other to finish, and thus neither ever does.

• A typical situation is, two or more actions need more than one resource to proceed, and each holds one resource while waiting for others to release the resources.
A deadlock resulting from competition for nonshareable railroad intersections
Traffic Deadlock

Deadlock possible:
Each vehicle needs two sections of the road to proceed.

Deadlock occurs:
Each vehicle hold one section of the road, waiting for the second section to clear.
Resolving Deadlock (1)

- **Deadlock prevention**: use an algorithm which can guarantee that no deadlock can occur.
Resolving Deadlock (2)

- **Deadlock avoidance**: use an algorithm which will anticipate that a deadlock is likely to occur and therefore refuse a resource request.
Resolving Deadlock (3)

- **Deadlock detection and recovery**: use an algorithm to detect the occurrence of a deadlock and force the actions to release the resources that are hold while waiting.